In-floor Active Chilled Beams
Perimeter Heating and Cooling for Underfloor Air Systems
Chilled Beams
Energy Efficient Perimeter Heating and Cooling Solutions

Chilled Beams
The latest innovations in commercial construction are targeted to improve environmental performance of a building throughout its lifecycle. Chilled beams have become a more common design strategy for controlling the perimeter zone and sometimes the interior zones of many buildings. In a chilled beam, water pipes pass chilled and hot water through a heat exchanger or a “beam”, which is then capable of cooling or heating air delivered to a space. The energy efficiency and improved capacity of water cooling and heating coupled with the ability to condition perimeter loads before they affect the occupant have been a strong catalyst to the growth in popularity.

Tate has introduced a new take on the tradition ceiling mounted chilled beam that offers the same benefits while removing some of the negatives associated with overhead chilled beams.

In-floor Active Chilled Beams
In-floor Active Chilled Beams provide the energy savings of an overhead chilled beam while avoiding many of the concerns. By bringing chilled water to the perimeter of a space under a raised floor there is little concern of damage from leaking water lines and latent loads producing condensate. In-floor Active Chilled Beams use only preconditioned air. In the event of an air handler malfunction condensate can be easily piped to a drain.

Overhead active chilled beams require extensive ductwork to meet the ventilation requirements of the space. The In-floor Active Chilled Beam requires little to no ductwork as it utilizes the benefits of increasingly popular under floor air distribution design.

Another advantage of In-floor Active Chilled Beams is improved heating capacity. Located directly under the perimeter glass, the beam catches cold air as it falls, heats it, and supplies it back to the space, saving energy and providing maximum heating performance.

Benefits of In-floor Active Chilled Beams

• Handle perimeter heating and cooling loads
• Chilled water is delivered safely below the floor
• Gain the full energy efficiency advantage of water for cooling and heating by conditioning at the source of the load
• Preconditioned plenum air delivered to the chilled beam will not produce condensate
• Ability to use water below dew point and control condensation
• Easily manage shoulder season conditioning
• Gain advantages of stratified airflow vs. overhead chilled beams
Improve Design & Performance
Underfloor Air Distribution and In-floor Active Chilled Beams

Underfloor Air Distribution (UFAD)
Underfloor Air Distribution (UFAD) uses a raised floor to create an air distribution plenum to improve energy efficiency and modularity of design. UFAD uses stratified airflow to improve the ventilation effectiveness and indoor air quality of the interior space. Stratified airflow refers to the delivery of air at a low velocity near the floor, allowing the air to naturally rise to a ceiling return, pulling contaminants and CO2 away from occupants.

UFAD systems also improve flexibility and control. UFAD allows for easy diffuser reconfiguration in reaction to office occupancy and layout changes. Each diffuser can be equipped with personal comfort controls so that occupants can adjust the amount and direction of airflow in their space.

Aesthetically, UFAD eliminates the need for drop ceilings and reduces the amount of service distribution space allowing for larger windows with greater daylighting and access to views.

In-floor Active Chilled Beams Improve UFAD
Overall, placing a chilled beam at the perimeter can simplify the design of a UFAD system by eliminating the concern for thermal decay. Typical UFAD designs use spider ducting to deliver air within 50 feet of the perimeter so it can be delivered to the space before it warms under the floor. The In-Floor Active Chilled Beam solves this by bringing chilled water to cool air directly at the perimeter of the building. Using chilled beams in place of perimeter fan powered boxes under the raised floor allows furniture and partitions to be placed freely in the building without the concern for maintenance access to equipment.

Aesthetically, the In-floor Active Chilled Beam reduces the quantity of visible diffusers within the perimeter zone and creates a cleaner appearance. By using segmented or continuous linear grilles along the perimeter of the building the in-floor chilled beam seamlessly integrates into the design of the space.

Benefits of In-floor Active Chilled Beams & UFAD
- Eliminates the need for spider ducting under the raised floor
- Eliminates the concerns associated with thermal decay
- No trapped equipment to maintain under the floor
- Linear grille improves aesthetics by reducing the number of diffusers in the perimeter zone
- Improved ventilation effectiveness
- UFAD provides personal comfort control
- Flexibility and modularity of UFAD
In-floor Active Chilled Beam Applications

Typical In-floor Active Chilled Beam Design

In-floor Active Chilled Beams allow for complete seamless integration. The beam can be installed as a continuous linear grille along the perimeter or segmented only where needed. Using chilled beams reduces the number of diffusers in the perimeter zone and eliminates the need for equipment to be installed under floor panels. With In-floor Active Chilled Beams you gain all the aesthetic benefits of a raised floor including the elimination of the drop ceiling and the reduction in service distribution space for expanded daylighting and access to views.

Continuous Design: In-floor Active Chilled Beams installed with a blanking grille between units.

Segmented Design: In-floor Active Chilled Beams installed with raised floor panels and carpet between units.
Tate In-floor Active Chilled Beams

With a wide product range the In-floor Active Chilled Beam offers many benefits over other perimeter solutions commonly used in raised floor office environments. The image below shows the above and below floor visual of this easy to install solution that offers buildings in almost any climate a highly efficient perimeter heating and cooling solution.

- Flanged edge for mounting to raised floor panel.
- Cut raised floor panel.
- Anodized aluminum linear grille with 15° angle of throw.
- 12.5" Minimum Finished Floor Height.
- Available in 2-pipe and 4-pipe configuration.
- Condensation pipe for easy drainage.
- Chilled beam supported by raised floor pedestal.
- Modulating air valve.
- Carpet overlays part of chilled beam housing.
Product Options

2-Pipe
The 2-Pipe model is designed to create an efficient and simple solution to meet perimeter heating and cooling needs. A supply and return water connections are located on opposite ends of the chilled beam. Hot and Chilled water can be alternately passed through these based on the building demands and the facility operators control. By time modulating the air valves and water valves controlled by a thermostat located in the space, one can meet the perimeter demands of any season.

4-Pipe
The 4-Pipe model is designed to maximize control and always meet any heating and cooling needs. Two supply and two return water connections are located on opposite ends of the chilled beam. Hot and Chilled water can be simultaneously passed through these based on the building demands. Time modulated air valves and water valves allow the unit to meet demand based on a thermostat located in the space.

2-Pipe with Electric Heat
Much like the 4-Pipe model, the 2-Pipe with electric heat is designed to maximize control, by utilizing electric heat at the perimeter where hot water is unavailable or uneconomical. A supply and return water connections are located on opposite ends of the chilled beam and an electrical connection is located on the device. Chilled water can be passed through the coils for cooling, while the electric heating coil can be activated for heating. By time modulating the air valves, water valves, and electric heat, one can meet the perimeter demands of any season.

Length & Capacity Options
All In-floor Active Chilled Beams are available in 4, 6, 8 and 10 feet lengths, in both typical (TD) and high (HD) density designs. These options reflect the ability to achieve a greater capacity by adding an additional air valve to create an HD unit.
2-Pipe: Modes of Operation

Cooling Mode
The Thermostat detects a cooling condition and the Aquastat detects chilled water. The control box will begin to time modulate the air valves and open the water valve. Chilled water flows through the coil, and air passes through the unit in a time modulation of six second full open bursts. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and water valves awaiting further system demands.

Heating Mode
The Thermostat detects a heating condition and the Aquastat detects hot water: The control box will begin to time modulate the water valve while the air valve remains closed. As hot water flows through the coil, air falls into the chilled beam where it is heated and convects out into the space. If additional heating is required to reach setpoint, the air valve will also time modulate. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and water valves, awaiting further system demands.

Shoulder Season
The Thermostat detects a cooling condition and the Aquastat detects hot water: The control box will time modulate the air valves while the water valve remains closed. Once the thermostat reaches set point, the air valves will close and the system will return to suspend mode.

The Thermostat detects a heating condition and the Aquastat detects chilled water: The control box will instruct the system to remain in suspend mode, awaiting further system demands.
2-Pipe with Electric Heat: Modes of Operation

Cooling Mode
The Thermostat detects a cooling condition and the Aquastat detects chilled water: The control box will begin to time modulate the air valves and open the water valve. Chilled water flows through the coil, and air passes through the unit in a time modulation of six second full open bursts. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and water valves awaiting further system demands.

Heating Mode
The Thermostat detects a heating condition: The control box will begin to time modulate the electric heater while the air valve remains closed. As the electric coil heats up, air falls into the chilled beam where it is heated and convects out into the space. If additional heating is required to reach setpoint, the air valve will also time modulate. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and de-energizing the heater, awaiting further system demands.
4-Pipe: Modes of Operation

Cooling Mode
The Thermostat detects a cooling condition: The control box will begin to time modulate the air valves and open the chilled water valve. Chilled water flows through the coil, and air passes through the unit in a time modulation of six second full open bursts. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and chilled water valves awaiting further system demands.

Heating Mode
The Thermostat detects a heating condition and the Aquastat detects hot water: The control box will begin to time modulate the hot water valve while the air valve remains closed. As hot water flows through the coil, air falls into the chilled beam where it is heated and convects out into the space. If additional heating is required to reach setpoint, the air valve will also time modulate. Once the thermostat detects that the occupied space has reached set point, the system will return to suspend mode, closing the air and hot water valves, awaiting further system demands.
In-floor Active Chilled Beam Performance

The chart below provides heating and cooling capacities per linear foot for Tate’s In-floor Active Chilled Beams based on several fixed parameters. Every chilled beam is available in both typical density (TD) and high density (HD) designs. These options reflect the ability to achieve a greater capacity by increasing the air flow of the device. For more information about applying these products to a specific project please contact us at 800-231-7788 or email TCBHelp@tateaccessfloors.com.

1. TD Ratings based on 19 CFM/LF @ .05" H2O Static Pressure, 2.0 GPM, 66°F db Inlet Air @ 50% RH, and 72°F db room
2. HD Ratings based on 38 CFM/LF @ .05" H2O Static Pressure, 2.0 GPM, 66°F db Inlet Air @ 50% RH, and 72°F db room
3. Electric heat ratings based on 1/4kW per lineal foot
Applying In-Floor Active Chilled Beams

It is important to select a Chilled Beam that meets both load and architectural needs. Chilled Beam selections have been made to fulfill maximum load within a 10 ft. perimeter zone. Capacities were determined based on the given conditions listed below: chilled water temperature, hot water temperature, inlet air temperature, flow rate, and room conditions. We have broken our space into zones for a proper load calculation: a conference space, an open office area, and a private office. Next, given space conditions (occupancy and skin load), we determined the heat load present in our space. Lastly we have decided whether it is preferred to use a segmented or continuous design.

For example, for our conference space we decided to use a segmented design. We next calculated out our total load within the space we expect to be handled by the chilled beam to be 3680 btu/hr. Next, we chose the HD/lf as the space is a high load density area, so we divide out the load by 520 btu/(hr-lf), resulting in a minimum length of 8 linear feet of chilled beam. Therefore, we have selected the 8’ long, segmented High Density chilled beam for this conference space.

For more information about applying these products to a specific project please contact us at 800-231-7788 or email TCBHelp@tateaccessfloors.com.

Building Conditions:

<table>
<thead>
<tr>
<th></th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Average Load</td>
<td>140 btu/(hr-lf)</td>
<td>190 btu/(hr-lf)</td>
</tr>
<tr>
<td>East Average Load</td>
<td>220 btu/(hr-lf)</td>
<td>180 btu/(hr-lf)</td>
</tr>
<tr>
<td>Water</td>
<td>55°F Chilled</td>
<td>130°F Hot</td>
</tr>
<tr>
<td>Supply Air</td>
<td>63°F Supplied Air + 3°F Rise across floor plate = 66°F Chilled Beam Entering Air</td>
<td></td>
</tr>
<tr>
<td>Room Condition</td>
<td>72°F, 50%RH</td>
<td></td>
</tr>
</tbody>
</table>

Chilled Beam Capacities Based on 2-Pipe model:

<table>
<thead>
<tr>
<th></th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD Capacity</td>
<td>280 btu/(hr-lf)</td>
<td>910 btu/(hr-lf)</td>
</tr>
<tr>
<td>HD Capacity</td>
<td>520 btu/(hr-lf)</td>
<td>1680 btu/(hr-lf)</td>
</tr>
</tbody>
</table>

'Simplified loads provided for demonstrative purposes only.'
Conference: 19'-0" North Facing with 4 Occupants in perimeter zone

Cooling
- Skin Load: $19' \times 140\text{btu/(hr-lf)} = 2660\text{ btu/hr}$
- Occupancy Sensible Load: $4 \text{ people} \times 255\text{ btu/(hr-person)} = 1020\text{ btu/hr}$
- Total Load: 3680 btu/hr
- 1 x 8' HD Chilled Beam - Segmented: $1\text{ unit } \times 8' \text{ Long } \times 520\text{ btu/(hr-lf)} = 4160\text{ btu/hr}$

Heating
- Heating Load- North: $19' \times 190\text{btu/(hr-lf)} = 3610\text{ btu/hr}$
- 1 x 8' HD Chilled Beam - Segmented: $1\text{ unit } \times 8' \text{ Long } \times 1680\text{ btu/(hr-lf)} = 13440\text{ btu/hr}$

Open Office: 53'-0" North Facing with 4 Occupants in perimeter zone

Cooling
- Skin Load: $53' \times 140\text{btu/(hr-lf)} = 7420\text{ btu/hr}$
- Occupancy Sensible Load: $4 \text{ People} \times 255\text{ btu/(hr-Person)} = 1020\text{ btu/hr}$
- Total Load: 8440 btu/hr
- 4 x 8' TD Chilled Beam - Continuous: $4\text{ units } \times 8' \text{ Long } \times 280\text{ btu/(hr-lf)} = 8960\text{ btu/hr}$

Heating
- Heating Load- North: $53' \times 190\text{btu/(hr-lf)} = 10070\text{ btu/hr}$
- 4 x 8' TD Chilled Beam - Continuous: $2\text{ units } \times 6' \text{ Long } \times 910\text{ btu/(hr-lf)} = 29120\text{ btu/hr}$

Private Corner Office: 23'-0" North Facing, 12'-6" East Facing with 1 Occupant in perimeter zone

Cooling
- Skin Load- North: $23' \times 140\text{btu/(hr-lf)} = 3220\text{ btu/hr}$
- Skin Load- East: $12.5' \times 220\text{btu/(hr-lf)} = 2750\text{ btu/hr}$
- Occupancy Sensible Load: $1 \text{ Person} \times 255\text{ btu/(hr-Person)} = 255\text{ btu/hr}$
- Total Load: 6225 btu/hr
- 2 x 6' TD Chilled Beam - Continuous: $2\text{ units } \times 6' \text{ Long } \times 280\text{ btu/(hr-lf)} = 3360\text{ btu/hr}$
- 1 x 6' HD Chilled Beam - Continuous: $1\text{ unit } \times 6' \text{ Long } \times 520\text{ btu/(hr-lf)} = 3120\text{ btu/hr}$

Heating
- Heating Load- North: $23' \times 190\text{btu/(hr-lf)} = 4370\text{ btu/hr}$
- Heating Load- East: $12.5' \times 180\text{btu/(hr-lf)} = 2250\text{ btu/hr}$
- Total Load: 6620 btu/hr
- 2 x 6' TD Chilled Beam - Continuous: $2\text{ units } \times 6' \text{ Long } \times 910\text{ btu/(hr-lf)} = 10920\text{ btu/hr}$
- 1 x 6' HD Chilled Beam - Continuous: $1\text{ unit } \times 6' \text{ Long } \times 1680\text{ btu/(hr-lf)} = 10080\text{ btu/hr}$

Heating Capacity provided is maximum capacity in additional heating mode, device operation will throttle down this capacity to meet demand.
In-floor Active Chilled Beam Accessories

Linear Grille Accessories
Tate also offers a line of Grille Accessories to architecturally design aesthetic solutions utilizing In-Floor Active Chilled Beams. All Grilles come standard in Anodized Aluminum Finish.

Continuous Blanking Grilles:
Faux grilles which can be installed between chilled beams to provide a single run of continuous linear grille where multiple chilled beams are installed with separation. Blanking grilles are sealed to prevent air leakage.

Continuous Corner Grille Kits:
Continuous Corner Grille Kits are to be installed along with chilled beams and blanking grilles to produce the appearance of a continuous grille around a corner of a space. Corner grilles are sealed to prevent any air leakage and are aesthetic in design.

Continuous End Cap Kits:
Continuous End Cap Kits are a solution intended to allow the termination of a run of continuous blanking grilles with a flanged side. The final installation is identical to the edge seen on the segmented chilled beam.

Power and Control Accessories

Thermostats:
Thermostats are designed to serve a single zone of chilled beams and provide a signal to the control box indicating the cooling or heating demands within that zone.

Quick Cables:
Quick Cables are used to connect all of the controls packages together as well as daisy chain chilled beams together for operation. Most connections require little or no manual wiring and simply click into place. Quick Cables are color coded and labeled for each use.

Air Valve Power Modules:
Air Valve Power Modules are designed to power up to 10 Air Valves. It is important to keep in mind that one chilled beam may have more than a single air valve.

Control Boxes:
Control Boxes are designed to serve a single zone. The control box has three inputs, thermostat, condensate alarm and aquastat (2-Pipe) and three outputs, Cooling Valve, Heating, and Air Valves. Based on the signals provided, the control box will output the appropriate controls to the chilled beam system to meet demand.
Improves UFAD Energy Performance
Perimeter Water Cooling with In-floor Active Chilled Beams vs. Fan Power Terminal Device

In-Floor Active Chilled Beams bring many benefits, one of which is energy savings. In this comparison, we evaluate the operational energy savings associated with the use of a under floor fan powered terminal device perimeter solution vs. a chilled beam solution. We have included a list of loads and equations used for this comparison. As you can see, we would expect somewhere in the range of 20%-30% reduction in floor plate HVAC energy use. Also, the air handler could now be sized smaller for additional tenable floor space.

We would be glad to help you analyze your space and determine what energy savings might be associated with the use of an In-Floor Active Chilled Beam. Contact us at 800-231-7788 or email TCBHelp@tateaccessfloors.com for details.

<table>
<thead>
<tr>
<th>Perimeter Air</th>
<th>Typical FPTD</th>
<th>Chilled Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{air}</td>
<td>Room Supply Air Temp (°F)</td>
<td>66°</td>
</tr>
<tr>
<td>$h_s \times L_p$</td>
<td>Skin Load (btu/hr-lf)</td>
<td>108,000</td>
</tr>
<tr>
<td>$(1.275 \times A)$</td>
<td>People Sensible Load (btu/hr)</td>
<td>10,282</td>
</tr>
<tr>
<td>$(3 \times A)$</td>
<td>Equipment Load (btu/hr)</td>
<td>24,192</td>
</tr>
<tr>
<td>H_p</td>
<td>Total Load (Btu/hr)</td>
<td>142,474</td>
</tr>
<tr>
<td>Q_p</td>
<td>Primary Air (CFM)</td>
<td>21,987</td>
</tr>
</tbody>
</table>

Perimeter Energy

- Chilled Water kWhr \((H_p \times C_e) / 12,000 \text{ Btu/hr}) \: 6.5
- FPTD Fan kWhr \((F_e \times Q_p) \): 6.6

Interior Air

- Q_i | Total Interior Primary Air (CFM) (Given) | 11,305 |

Air Handler

- Q_{ahu} | AHU Volume (CFM) \((Q_p + Q_i) \): 33,292 | 19,065 |
- E_{ahu} | AHU Fan kWhr \((F_e \times Q_p) \): 10.0 | 5.7 |

Energy Analysis

- E_p | Total Perimeter kWhr | 6.6 | 6.5 |
- E_{ahu} | Total kWhr \((E_p + E_{ahu}) \): 16.6 | 12.2 |
- **Primary AHU CFM Reduction** | 43% |
- **Floor Plate HVAC Energy Reduction** | 26% |

Note: Although perimeter supply air volume has been reduced by the lower supply air temperature, this does not adversely affect the total quantity of ventilation air provided to the perimeter zone. The In-Floor Active Chilled Beam’s supply air volume exceeds the ventilation requirements to the zone prescribed by IMC 2009.